III B.Tech - I Semester - Regular/Supplementary Examinations October 2018

LINEAR INTEGRATED CIRCUITS
 (ELECTRONICS \& COMMUNICATION ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks $11 \mathrm{x} 2=22 \mathrm{M}$
1.
a) Define slew rate of Op-Amp.
b) What is the need of level translator in Op-Amp?
c) What is PSRR of Op-Amp.
d) Draw the circuit of integrator with an Op-Amp.
e) Why open-loop op-amp configuration is not used in linear applications?
f) Draw the circuit diagram of a second order high pass filter.
g) List the applications of All pass filters.
h) Draw the pin diagram of 555 timer.
i) What is the purpose of low pass filter in a phase locked loop?
j) What are the specifications of IC AD 574(12 bit ADC)?
k) Define Resolution and Linearity related to DAC.

PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) Draw the ac equivalent circuit of dual input unbalanced output differential amplifier and derive the expressions for small signal voltage gain and input resistance. 10 M
b) Explain the following in detail
i) Input offset voltage ii) Input offset current
iii) CMRR

6 M
3. a) Draw the circuit of Log and Anti log Amplifiers. Explain its operation.
b) Explain the operation of Instrumentation amplifier with the help of block diagram and derive equation for gain. 8 M
4. a) Design a first order High pass filter with cutoff frequency of 1 KHz and pass band gain of 11 . Also draw its frequency response.
b) Explain the principle of switched capacitor filters and list their advantages.
5. a) Explain the working of 555 timer as Astable multivibrator with neat diagram.
b) What is frequency translation and explain FSK demodulation using 565 PLL.
6. a) Draw the circuit of weighted resistor DAC and derive expression for output-analog voltage.
b) With a neat block diagram explain the data conversion procedure for dual slope ADC.

8 M

